Sains Malaysiana 52(12)(2023): 3801-3812
http://doi.org/10.17576/jsm-2023-5212-13
Zerumbone: A Potent
Emerging Phytochemical with Anticancer Therapeutic Potential
(Zerumbon: Kemunculan Fitokimia Poten dengan Potensi Terapeutik Antikanser)
NUR
AQILAH HUDA AHMAD JAMIL, SYLVIA CHONG HOONGLI, NURUL AKMARYANTI ABDULLAH,
NORAINA MOHAMAD ZAKUAN, HAFIZAH ABDUL HAMID, MUHAMMAD ZULFADLI MEHAT, MANRAJ
SINGH CHEEMA & NUR FARIESHA MD HASHIM*
Faculty
of Medicine and Health Sciences, Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
Received: 19 July 2023/Accepted: 1 December 2023
Abstract
Breast
cancer is a prevalent cause of global mortality, characterised by abnormal cell
growth within the breast. These cells can spread to distant sites in the body
through metastasis and one of the mechanisms that breast cancer cells use to
metastasise is via invadopodia formation. Accumulated
evidence has explained pathways that may contribute to the breast cancer cells
metastasis including the ERK, SMAD-3, STAT3 and NF-κB pathways. The
hypoxic conditions within tumours enhance their metastatic ability through
HIF-1α upregulation. Despite advanced treatments including chemotherapy
and radiotherapy, these approaches are expensive and sometimes lack efficacy. Zerumbone, a compound extracted from Zingiber zerumbet, is known for its anti-cancer
properties. It counteracts cancer cell metastasis by reducing cell migration,
invasion, and proliferation by acting upon multiple signalling pathways. This
review recapitulates the metastasis of breast cancer and its biomarkers. In addition, our review will also
explore the impact of zerumbone, therapeutic roles
and its mechanism of action in reducing breast cancer metastasis.
Keywords: Breast cancer; hypoxia; invadopodia;
metastasis; zerumbone
Abstrak
Kanser payudara adalah penyebab lazim kematian
global, dicirikan oleh pertumbuhan sel yang tidak normal dalam payudara.
Sel-sel ini boleh merebak ke tapak yang jauh dalam badan manusia melalui
metastasis dan salah satu mekanisme yang digunakan oleh sel kanser payudara
untuk metastasis adalah melalui pembentukan invadopodia. Bukti terkumpul telah
menjelaskan mekanisme yang mungkin menyumbang kepada metastasis sel kanser
payudara termasuk laluan yang melibatkan ERK, SMAD-3, STAT3 dan NF-κB.
Keadaan hipoksik dalam tumor meningkatkan keupayaan metastatik mereka melalui peningkatan HIF-1α.
Walaupun dengan kehadiran rawatan lanjutan termasuk kemoterapi dan radioterapi,
rawatan ini memerlukan kos yang tinggi dan kadangkala kurang berkesan.
Zerumbon, sebatian yang diekstrak daripada Zingiber zerumbet, terkenal
dengan sifat anti-kansernya. Ia menentang metastasis sel kanser dengan
mengurangkan penghijrahan, pencerobohan dan percambahan sel dengan bertindak
melalui pelbagai mekanisme. Kajian ini menyusun semula metastasis kanser
payudara dan biopenandanya.
Di samping itu, penyelidikan kami juga akan mengkaji kesan zerumbon, peranan
pemulihan dan mekanisme tindakannya dalam mengurangkan metastasis kanser
payudara.
Kata kunci: Hipoksia; invadopodia; kanser payudara;
metastasis; zerumbon
REFERENCES
Al-Amin, M., Sultana, G.N.N. & Hossain, C.F. 2012.
Antiulcer principle from Zingiber montanum. Journal of
Ethnopharmacology 141(1): 57-60.
Casey, S.C., Amedei,
A., Aquilano, K., Azmi, A.S., Benencia, F., Bhakta, D., Bilsland, A.E.,
Boosani, C.S., Chen, S., Ciriolo, M.R., Crawford, S., Fujii, H., Georgakilas,
A.G., Guha, G., Halicka, D., Helferich, W.G., Heneberg, P., Honoki, K., Keith,
W.N., Kerkar, S.P., Mohammed, S.I., Niccolai, E., Nowsheen, S., Vasantha
Rupasinghe, H.P., Samadi, A., Singh, N., Talib, W.H., Venkateswaran, V.,
Whelan, R.L., Yang, X. & Felsher, D.W. 2015. Cancer prevention and therapy
through the modulation of the tumor microenvironment. Seminars in Cancer
Biology 35: S199-S223.
Castaneda, S.A.
& Strasser, J. 2017. Updates in the treatment of breast cancer with
radiotherapy. Surgical Oncology Clinics of North America 26(3): 371-382.
Dattachoudhury, S.,
Sharma, R., Kumar, A. & Jaganathan, B.G. 2020. Sorafenib inhibits
proliferation, migration and invasion of breast cancer cells. Oncology
(Switzerland) 98(7): 478-486.
Eddy, R.J.,
Weidmann, M.D., Sharma, V.P. & Condeelis, J.S. 2017. Tumor cell
invadopodia: Invasive protrusions that orchestrate metastasis. Trends in Cell
Biology 27(8): 595-607.
Edwards, A. &
Brennan, K. 2021. Notch signalling in breast development and cancer. Frontiers
in Cell and Developmental Biology 9: 692173.
El Fagie, R.M.H.,
Yusoff, N.A., Lim, V., Kamal, N.N.S.N.M. & Samad, N.A. 2021. Anti-cancer
and anti-angiogenesis activities of zerumbone isolated from Zingiber
zerumbet – A systematic review. Current Research in Nutrition and Food
Science 9(2): 353-374.
Elaraj, D.M.,
Weinreich, D.M., Varghese, S., Puhlmann, M., Hewitt, S.M., Carroll, N.M., Feldman,
E.D., Turner, E.M. & Alexander, H.R. 2006. The role of interleukin 1 in
growth and metastasis of human cancer xenografts. Clinical Cancer Research 12(4): 1088-1096.
Eom, Y.H., Kim,
H.S., Lee, A., Song, B.J. & Chae, B.J. 2016. BCL2 as a subtype-specific
prognostic marker for breast cancer. Journal of Breast Cancer 19(3):
252-260.
Fadhel Abbas
Albaayit, S., Maharjan, R., Abdullah, R. & Mohd Noor, M.H. 2022. Evaluation
of anti-methicillin-resistant Staphylococcus aureus property of
zerumbone. J. Appl. Biomed. 20: 15-21.
Girisa, S., Shabnam,
B., Monisha, J., Fan, L., Halim, C.E., Arfuso, F., Ahn, K.S., Sethi, G. &
Kunnumakkara, A.B. 2019. Potential of zerumbone as an anti-cancer agent. Molecules 24(4): 734.
Guo, F., Wang, Y.,
Liu, J., Mok, S.C., Xue, F. & Zhang, W. 2016. CXCL12/CXCR4: A symbiotic
bridge linking cancer cells and their stromal neighbors in oncogenic
communication networks. Oncogene 35(7): 816-826.
Guo, Y.J., Pan,
W.W., Liu, S.B., Shen, Z.F., Xu, Y. & Hu, L.L. 2020. ERK/MAPK signalling
pathway and tumorigenesis. Experimental and Therapeutic Medicine 19(3):
1997-2007.
Hamad, H.A.,
Gopalsamy, B., Kqueen, C.Y. & Hashim, N.F.M. 2019. Potential ability of
phytochemical in inhibition of invadopodia formation and HIF-1α in cancer
metastasis. Malaysian Journal of Medicine and Health Sciences 15: 71-80.
Han, J., Bae, S.Y.,
Oh, S.J., Lee, J., Lee, J.H., Lee, H.C., Lee, S.K., Kil, W.H., Kim, S.W., Nam,
S.J., Kim, S. & Lee, J.E. 2014. Zerumbone suppresses IL-1β-induced
cell migration and invasion by inhibiting IL-8 and MMP-3 expression in human
triple-negative breast cancer cells. Phytotherapy Research 28(11):
1654-1660.
Haque, M.A., Jantan,
I., Arshad, L. & Bukhari, S.N.A. 2017. Exploring the immunomodulatory and
anticancer properties of zerumbone. Food and Function 8(10): 3410-3431.
Hashimoto, T. &
Shibasaki, F. 2015. Hypoxia-inducible factor as an angiogenic master switch. Frontiers
in Pediatrics 3: 33.
Jeannot, P. &
Besson, A. 2020. Cortactin function in invadopodia. Small GTPases 11(4):
256-270.
Jeon, M., Han, J.,
Nam, S.J., Lee, J.E. & Kim, S. 2016. Elevated IL-1β expression induces
invasiveness of triple negative breast cancer cells and is suppressed by
zerumbone. Chemico-Biological Interactions 258: 126-133.
Karamanou, K.,
Franchi, M., Vynios, D. & Brézillon, S. 2020. Epithelial-to-mesenchymal
transition and invadopodia markers in breast cancer: Lumican a key regulator. Seminars
in Cancer Biology 62: 125-133.
Khera, S. &
Gupta, S. 2020. Zerumbone: A magical phytochemical. International Journal of
Health Sciences and Research 10: 73-79.
Khoshakhlagh, M.,
Soleimani, A., Binabaj, M.M., Avan, A., Ferns, G.A., Khazaei, M. &
Hassanian, S.M. 2019. Therapeutic potential of pharmacological TGF-β
signaling pathway inhibitors in the pathogenesis of breast cancer. Biochemical
Pharmacology 164: 17-22.
Kim, S., Lee, J.,
Jeon, M., Lee, J.E. & Nam, S.J. 2015. Zerumbone suppresses the motility and
tumorigenecity of triple negative breast cancer cells via the inhibition of
TGF-β1 signaling pathway. Oncotarget 7(2): 1544-1558.
Kim, S., Kil, W.H.,
Lee, J., Oh, S.J., Han, J., Jeon, M., Jung, T., Lee, S.K., Bae, S.Y., Lee,
H.C., Lee, J.H., Yi, H.W., Kim, S.W., Nam, S.J. & Lee, J.E. 2014. Zerumbone
suppresses EGF-induced CD44 expression through the inhibition of STAT3 in
breast cancer cells. Oncology Reports 32(6): 2666-2672.
Kiyama, R. 2020.
Nutritional implications of ginger: chemistry, biological activities and
signaling pathways. Journal of Nutritional Biochemistry 86: 108486.
Lambert, A.W.,
Pattabiraman, D.R. & Weinberg, R.A. 2017. Emerging biological principles of
metastasis. Cell 168(4): 670-691.
Li, Y., Zhao, L.
& Li, X.F. 2021. Hypoxia and the tumor microenvironment. Technology in
Cancer Research and Treatment 20: 15330338211036304.
Li, Y.M., Pan, Y.,
Wei, Y., Cheng, X., Zhou, B.P., Tan, M., Zhou, X., Xia, W., Hortobagyi, G.N.,
Yu, D. & Hung, M.C. 2004. Upregulation of CXCR4 is essential for
HER2-mediated tumor metastasis. Cancer Cell 6(5): 459-469.
Linderholm, B.K.,
Hellborg, H., Johansson, U., Elmberger, G., Skoog, L., Lehtiö, J. &
Lewensohn, R. 2009. Significantly higher levels of vascular endothelial growth
factor (VEGF) and shorter survival times for patients with primary operable
triple-negative breast cancer. Annals of Oncology 20(10): 1639-1646.
Liu, Z.J., Semenza,
G.L. & Zhang, H.F. 2015. Hypoxia-inducible factor 1 and breast cancer
metastasis. Journal of Zhejiang University: Science B 16(1): 32-43.
Lobry, C., Oh, P.,
Mansour, M.R., Thomas Look, A. & Aifantis, I. 2014. Notch signaling:
Switching an oncogene to a tumor suppressor. Blood 123(16): 2451-2459.
Meirson, T. &
Gil-Henn, H. 2018. Targeting invadopodia for blocking breast cancer metastasis. Drug Resistance Updates 39: 1-17.
Moses, H. &
Barcellos-Hoff, M.H. 2011. TGF-β Biology in mammary development and breast
cancer. Cold Spring Harbor Perspectives in Biology 3(1): a003277.
Murakami, A.,
Matsumoto, K., Koshimizu, K. & Ohigashi, H. 2003. Effects of selected food
factors with chemopreventive properties on combined lipopolysaccharide- and
interferon-γ-induced IκB degradation in RAW264.7 macrophages. Cancer
Letters 195(1): 17-25.
Nair, S. &
Dhodapkar, M.V. 2017. Natural killer T cells in cancer immunotherapy. Frontiers
in Immunology 8: 1178.
Nakamura, Y.,
Yoshida, C., Murakami, A., Ohigashi, H., Osawa, T. & Uchida, K. 2004.
Zerumbone, a tropical ginger sesquiterpene, activates phase II drug
metabolizing enzymes. FEBS Letters 572(1-3): 245-250.
O’Neill, C.F., Urs,
S., Cinelli, C., Lincoln, A., Nadeau, R.J., León, R., Toher, J., Mouta-Bellum,
C., Friesel, R.E. & Liaw, L. 2007. Notch2 signaling induces apoptosis and
inhibits human MDA-MB-231 xenograft growth. American Journal of Pathology 171(3): 1023-1036.
O’Reilly, E.A.,
Gubbins, L., Sharma, S., Tully, R., Guang, M.H.Z., Weiner-Gorzel, K.,
McCaffrey, J., Harrison, M., Furlong, F., Kell, M. & McCann, A. 2015. The
fate of chemoresistance in triple negative breast cancer (TNBC). BBA
Clinical 3: 257-275.
Om Alblazi, K.M.
& Siar, C.H. 2015. Cellular protrusions - Lamellipodia, filopodia,
invadopodia and podosomes - and their roles in progression of orofacial
tumours: Current understanding. Asian Pacific Journal of Cancer Prevention 16(6): 2187-2191.
Padilla, J. &
Lee, J. 2021. A novel therapeutic target, BACH1, regulates cancer metabolism. Cells 10(3): 634.
Padmanaban, V.,
Krol, I., Suhail, Y., Szczerba, B.M., Aceto, N., Bader, J.S. & Ewald,
A.J. 2019. E-cadherin is required for
metastasis in multiple models of breast cancer. Nature 573(7774):
439-444.
Prasannan, R.,
Kalesh, K.A., Shanmugam, M.K., Nachiyappan, A., Ramachandran, L., Nguyen, A.H.,
Kumar, A.P., Lakshmanan, M., Ahn, K.S. & Sethi, G. 2012. Key cell signaling
pathways modulated by zerumbone: Role in the prevention and treatment of
cancer. Biochemical Pharmacology 84(10): 1268-1276.
Rajabi, S., Maresca,
M., Yumashev, A.V., Choopani, R. & Hajimehdipoor, H. 2021. The most
competent plant‐derived natural products for targeting apoptosis in
cancer therapy. Biomolecules 11(4): 534.
Rizvi, Z.A., Puri,
N. & Saxena, R.K. 2015. Lipid antigen presentation through CD1d pathway in
mouse lung epithelial cells, macrophages and dendritic cells and its
suppression by poly-dispersed single-walled carbon nanotubes. Toxicology in
Vitro 29(6): 1275-1282.
Sakinah, S.A.S., Tri
Handayani, S. & Hawariah, L.P.A. 2007. Zerumbone induced apoptosis in liver
cancer cells via modulation of Bax/ Bcl-2 ratio. Cancer Cell International 7: 4.
Salminen, A.,
Lehtonen, M., Suuronen, T., Kaarniranta, K. & Huuskonen, J. 2008.
Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory
and anticancer potential. Cellular and Molecular Life Sciences 65(19):
2979-2999.
Sarkar, D.K., Jana,
D., Patil, P.S., Chaudhari, K.S., Chattopadhyay, B.K., Chikkala, B.R., Mandal,
S. & Chowdhary, P. 2013. Role of NF-κB as a prognostic marker in
breast cancer: A pilot study in Indian patients. Indian Journal of Surgical
Oncology 4(3): 242-247.
Schioppa, T.,
Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A., Bernasconi,
S., Saccani, S., Nebuloni, M., Vago, L., Mantovani, A., Melillo, G. & Sica,
A. 2003. Regulation of the chemokine receptor CXCR4 by hypoxia. Journal of
Experimental Medicine 198(9): 1391-1402.
Scully, O.J., Bay,
B-H., Yip, G. & Yu, Y. 2012. Breast cancer metastasis. Cancer Genomics
& Proteomics 9(5): 311-320.
Sehrawat, A.,
Arlotti, J.A., Murakami, A. & Singh, S.V. 2012. Zerumbone causes Bax- and
Bak-mediated apoptosis in human breast cancer cells and inhibits orthotopic
xenograft growth in vivo. Breast Cancer Research and Treatment 136(2): 429-441.
Sehrawat, A., Sakao,
K. & Singh, S.V. 2014. Notch2 activation is protective against anticancer
effects of zerumbone in human breast cancer cells. Breast Cancer Res. Treat 146(3): 543-555.
Semenza, G.L. 2001.
HIF-1 and mechanisms of hypoxia sensing. Current Opinion in Cell Biology 13(2): 167-171.
Shrestha, Y.,
Schafer, E.J., Boehm, J.S., Thomas, S.R., He, F., Du, J., Wang, S., Barretina,
J., Weir, B.A., Zhao, J.J., Polyak, K., Golub, T.R., Beroukhim, R. & Hahn,
W.C. 2012. PAK1 is a breast cancer oncogene that coordinately activates MAPK
and MET signaling. Oncogene 31(29): 3397-3408.
Shyanti, R.K.,
Sehrawat, A., Singh, S.V., Mishra, J.P.N. & Singh, R.P. 2017. Zerumbone
modulates CD1d expression and lipid antigen presentation pathway in breast
cancer cells. Toxicology in Vitro 44: 74-84.
Smith, D. 2011.
Synthetic and endogenous cannabinoids inhibit breast cancer cell growth and
metastasis. Honors research thesis. The Ohio State University (Unpublished).
Sulaiman, M.R.,
Perimal, E.K., Akhtar, M.N., Mohamad, A.S., Khalid, M.H., Tasrip, N.A.,
Mokhtar, F., Zakaria, Z.A., Lajis, N.H. & Israf, D.A. 2010.
Anti-inflammatory effect of zerumbone on acute and chronic inflammation models
in mice. Fitoterapia 81(7): 855-858.
Sung, B., Jhurani,
S., Kwang, S.A., Mastuo, Y., Yi, T., Guha, S., Liu, M. & Aggarwal,
B.B. 2008. Zerumbone down-regulates
chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced
invasion of breast and pancreatic tumor cells. Cancer Research 68(21):
8938-8944.
Tan, A.R., Alexe, G.
& Reiss, M. 2009. Transforming growth factor-β signaling: Emerging
stem cell target in metastatic breast cancer? Breast Cancer Research and
Treatment 115(3): 453-495.
Wang, M., Niu, J.,
Gao, L., Gao, Y. & Gao, S. 2019. Zerumbone inhibits migration in ESCC via
promoting Rac1 ubiquitination. Biomedicine and Pharmacotherapy 109:
2447-2455.
Wertheimer, E.,
Gutierrez-Uzquiza, A., Rosemblit, C., Lopez-Haber, C., Sosa, M.S. & Kazanietz,
M.G. 2012. Rac signaling in breast cancer: A tale of GEFs and GAPs. Cellular
Signalling 24(2): 353-362.
Whiteside, T.L.
2008. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45): 5904-5912.
Woźniak, M.,
Krajewski, R., Makuch, S. & Agrawal, S. 2021. Phytochemicals in
gynecological cancer prevention. International Journal of Molecular Sciences 22(3): 1219.
Yin, L., Duan, J.J.,
Bian, X.W. & Yu, S.C. 2020. Triple-negative breast cancer molecular
subtyping and treatment progress. Breast Cancer Research 22(1): 61.
Zhao, F., Ma, B.,
Lv, Z., Chen, J., Cai, Y., Xu, C. & Cai, Y. 2020. Zerumbone decreases BACH1
levels by upregulating miR-708 to inhibit breast cancer cell proliferation and
invasion. Tropical Journal of Pharmaceutical Research 19(7): 1411-1416.
*Corresponding author; email: nurfariesha@upm.edu.my
|